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ABSTRACT

Satellite-based precipitation estimates are a vital resource for hydrologic applications in data-sparse regions

of the world, particularly at daily or longer time scales.With the launch of a new generation of high-resolution

imagers on geostationary platforms such as the Geostationary Operational Environmental Satellite series R

(GOES-R), an opportunity exists to advance the detection and estimation of flash-flood-scale precipitation

events from space beyond what is currently available. Because visible and infrared sensors can only observe

cloud-top properties, many visible- and infrared-band-based rainfall algorithms attempt to first classify clouds

before deriving a rain rate. This study uses a 2-yr database of cloud-top properties from proxy Advanced

Baseline Imager radiances fromGOES-Rmatched to surface precipitation types from theMulti-RadarMulti-

Sensor (MRMS) system to develop a naïve Bayesian precipitation type classifier for the four major types of

precipitation in MRMS: stratiform, convective, tropical, and hail. Evaluation of the naïve Bayesian pre-

cipitation type product showed a bias toward classifying convective and stratiform at the expense of tropical

and hail. The tropical and hail classes in MRMS are derived based on the vertical structure and magnitude of

radar reflectivity, which may not translate to an obvious signal at cloud top for a satellite-based algorithm.

However, the satellite-based product correctly classified the hail areas as being convective in nature for the

vast majority of missed hail events.

1. Introduction

Real-time estimation of rain and snow rates at hourly

and subhourly scales remains a significant challenge in

the western United States, where complex terrain limits

radar coverage and real-time rain gauge networks are

sparse (Maddox et al. 2002). Quantitative precipitation

estimation (QPEs) from geostationary satellites offers

the advantage of full coverage and spatiotemporal res-

olution comparable to ground-based radars, particu-

larly with the launch of the Geostationary Operational

Environmental Satellite series R (GOES-R) spacecraft.

The disadvantage of using spaceborne data from geo-

stationary orbit is the indirectness of the signal (i.e.,

brightness temperatures radiating from tops of clouds)

to precipitation rates experienced at the earth’s surface.

The Advanced Baseline Imager (ABI) and Geosta-

tionary Lightning Mapper (GLM) instruments aboard

GOES-R represent a significant leap forward in terms of

geostationary monitoring of clouds and precipitation

over the contiguous United States (CONUS; Schmit

et al. 2005; Karlson and Smith 2012; Goodman et al.

2013). New spectral bands from the ABI have enabled

the development of a suite of cloud-derived products,

including cloud-top phase, optical depth, and particle

size, and more accurate estimates of cloud-top height

and temperature. The cloud-top phase, optical depth,
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and particle size will allow for a much improved char-

acterization of cloud-top microphysics than has histori-

cally been available from geostationary orbit, which

can potentially be useful for classification of precipi-

tation types and QPE over areas that have few other

observations.

Many remote sensing rainfall retrieval algorithms

perform a basic segregation between convective and

stratiform precipitation types, in recognition of the in-

herent differences between these types in terms of mi-

crophysical structure, dynamical processes, and ultimately

surface precipitation intensity. Convective/stratiform

segregation techniques for active radar systems can

involve detection of melting-layer signatures in reflec-

tivity or cross-correlation coefficient for stratiform rain

(Awaka et al. 1997; Gourley and Calvert 2003; Brandes

and Ikeda 2004), the use of minimum composite re-

flectivity or vertically integrated liquid thresholds to

identify strong convective cores (Zhang et al. 2011; Qi

et al. 2013), or analysis of both the horizontal and ver-

tical structure of reflectivity within the storm (Rosenfeld

et al. 1995; Steiner et al. 1995; Biggerstaff and Listemaa

2000; Anagnostou 2004).

Precipitation types for spaceborne infrared (IR)

rainfall retrievals are necessarily tied to differences in

cloud-top properties for convective and stratiform rain.

For example, the convective–stratiform technique

(CST) assigns areas of influence around local minima in

the 10.5–12.6-mm brightness temperature Tb to isolate

deep convective cores from the trailing stratiform region

in tropical mesoscale convective systems (Adler and

Negri 1988). False detections in cirrus shields were re-

moved in CST through the use of a slope parameter

derived over a region of neighboring pixels.

More recently, the Precipitation Estimation from

Remotely Sensed Information Using Artificial Neural

Networks–Cloud Classification System (PERSIANN-

CCS) was developed that computed various properties

of cloud patch objects such as the minimum and mean

temperature, geometric area and shape, temperature

gradients, and temperature standard deviations to clas-

sify the patches into one of seven clustered groups of

patches with similar properties (Hong et al. 2004). No

explicit attempt was made to classify cloud patches as

convective or stratiform, but the intrinsic differences

between height and texture of cloud tops associated with

the two precipitation regimes was amotivating factor for

the classification scheme for more targeted derivation of

Tb–rain-rate curves.

The launch of the 12-channel Spinning Enhanced

Visible and Infrared Imager (SEVIRI) on the Meteosat

Second Generation (MSG) satellite renewed interest in

cloud classification and rainfall estimation in the visible

and infrared (VIR) spectral range with the availability

of new spectral bands from geostationary orbit well

suited to the detection of cloud-top phase, effective

particle size, and optical thickness (Kühnlein et al. 2010;

Giannakos and Feidas 2013; Kühnlein et al. 2014). These
capabilities continue to expand globally with the 2014

launch of the 16-channel Advanced Himawari Imager on

the Himawari-8 spacecraft (Bessho et al. 2016) and the

upcoming launch of the 16-channel ABI on GOES-R.

The purpose of this study is to continue efforts to

evaluate the value of multispectral derived cloud-top

properties for classification of precipitation type from

space. The classification will serve as a complement to

ground-based products across the CONUS in areas

where radar coverage is inadequate, which would then

be used to derive satellite-based QPE in order to

achieve a seamless, multisensor, high-resolution QPE

mosaic nationwide. A new technique is proposed that

uses a matched database of ground-radar-derived pre-

cipitation types and associated cloud-top properties to

drive a naïve Bayesian retrieval of precipitation type

probabilities. The naïve Bayesian model not only casts

precipitation type classification in a probabilistic form to

allow for quantification of uncertainty, but it is also

computationally efficient for application to spaceborne

sensors that provide information with high temporal

frequency (e.g., time scales from 30 s to 15min). Section

2 will summarize the various data sources used in this

study and will provided more details about both the

ground-radar-based dataset and the satellite products.

Section 3 will describe the naïve Bayesian approach and

construction of the cloud product probability distribu-

tions. Section 4 provides the results of our analysis in the

form of performance metrics, regional distributions, and

case studies. Section 5 will summarize the project and

provide some general conclusions.

2. Data

The geographic domain for this studywas theCONUS

as defined for the Multi-Radar Multi-Sensor (MRMS)

system, which will be described in more detail in section

2a. TheMRMSdomain is a rectangular grid that extends

from 208 to 558N latitude and from 1308 to 608W longi-

tude. To derive probability distributions of cloud-top

properties for specific precipitation types, a large data-

base was required to ensure that the reference clima-

tology was as close as possible to the full spectrum of

rainfall events observed in nature over the study do-

main. A 2-yr period from 1 January 2011 to 31 Decem-

ber 2012 was selected that represents a nearly complete,

uninterrupted record of both 5-min to hourly products

from MRMS and 30-min proxy GOES-R cloud-derived
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products from GOES-13 (Greenwald et al. 2016). The

only noteworthy period of missing data (aside from rare

and sporadic dropouts of the 5-min MRMS products)

was a 25-day period from 24 September to 19 October

2012 during which all data from GOES-13 were un-

available. Entries for the database met the following

minimum requirements to be included:

1) MRMSRadarQuality Index (RQI)5 1.0, represent-

ing locations where the radar beam is sampling below

the melting layer and is unblocked by terrain (Zhang

et al. 2012). Requiring a high RQI for the MRMS

products ensures that the diagnosed MRMS pre-

cipitation type is not degraded because of a lack of

observations below the melting layer. Submelting-

layer observations are required for the MRMS

tropical class, and the hail class’s dependence on

vertically integrated liquid also requires sufficient

vertical coverage.

2) Maximum MRMS radar-based surface precipitation

rate $10mmh21 within the GOES-R footprint. The

purpose of the rain-rate threshold was to only retain

grid points that contained significant precipitation

that was likely reaching the surface. One of the

limitations of the ground-radar-based QPE is that

the height of the radar beam aloft can lead to false

detections of light precipitation where it may be

evaporating before it reaches the surface (i.e., virga).

Furthermore, the focus on flash flood detection in

this work motivated the desire to isolate moderate to

heavy rain rates over light precipitation.

3) At least 30% of the MRMS grid boxes matched to a

GOES-R proxy grid point contain nonzero precipi-

tation rates.

4) NoMRMS grid point can be classified as snow within

the GOES-R footprint.

5) GOES-R proxy cloud type (described in section 2b)

must be one of the six types associated with clouds

capable of precipitation: warm rain, supercooled

liquid water, thick ice, cirrus, multilayer, or over-

shooting tops.

a. Radar-derived fields: The MRMS system

The MRMS system integrates approximately 180 op-

erational radars across the CONUS and southern Can-

ada with numerical weather prediction (NWP) analyses

of the environment, lightning data, and rain gauge ob-

servations to produce seamless reflectivity mosaics

along with derived severe weather and QPE products

at a high spatiotemporal resolution (0.018 grid spacing and
2-min updates). Zhang et al. (2016) summarized the his-

tory of MRMS and all products that are available oper-

ationally from the National Centers for Environmental

Prediction (NCEP). Three MRMS products were ar-

chived for our entire 2011–12 database period: in-

stantaneous surface precipitation rate (SPR), surface

precipitation type (SPT), and RQI.

The instantaneous SPR in MRMS is derived directly

from the SPT product through use of rain-rate (reflec-

tivity) [i.e., R(Z)] relationships assigned to different

precipitation type classes. While the precipitation types

have expanded in recent years to include two stratiform

rain classes (warm and cool season) and a subdivision of

the tropical class to delineate stratiform and convective

regions (called ‘‘tropical stratiform’’ and ‘‘tropical con-

vective’’), the 2011–12 archive was produced using an

earlier form of the SPT that only had five major classes:

stratiform, convective, tropical, hail, and snow (Zhang

et al. 2011). For all practical purposes, collapsing the

separate stratiform and tropical classes to ‘‘stratiform’’

and ‘‘tropical,’’ respectively, in the current MRMS

SPT would produce the same precipitation type de-

lineation that would have been available in 2011 and

2012. Convective and hail classes were not changed

with the update.

Discrimination between stratiform and convective

precipitation types in MRMS is based on minimum

thresholds in composite reflectivity, vertically integrated

liquid, or reflectivity above the 2108C isotherm, which

means that the separation is highly dependent on radar

observables. This method works well for single-

polarization radar QPE applications because of mini-

mal differences in convective, tropical, and stratiformR(Z)

power curves at low reflectivity ranges (e.g., ,30dBZ);

however, using the thresholds in this way leads to precip-

itation type delineation where only strong convective up-

draft cores are classifiedas convective,while all surrounding

areas of low reflectivity are classified as stratiform regard-

less of storm dynamics and morphology.

RQI is a unitless quantity that ranges from 0.0 to 1.0

and was designed to be an indicator of where beam

blockage, melting-layer height, and overall radar cov-

erage gaps may limit radar sampling of precipitation for

QPE applications (Zhang et al. 2012). Figure 1 shows an

example of the RQI product for the CONUS valid at

0000 UTC 28 October 2014. The RQI product reveals

lower-quality radar measurements for surface QPE to

the northwest of a cold front draped across the central

plains. Behind the advancing cold front, there were

lower melting-layer heights such that the ranges at

which radars can measure liquid phase hydrometeors

below the melting layer were limited. There are also

significantly lower values of RQI in the Intermountain

West of the CONUS because of intervening mountain

blockages combined with lower melting-layer heights.

In contrast, the warmer air mass in the eastern part of
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the CONUS allows for radar sampling of liquid pre-

cipitation (i.e., RQI 5 1.0) at much farther ranges.

b. Cloud-top properties

Although GOES-R had not yet launched at the time

of this study, proxies of the cloud-derived products were

developed by the GOES-R Algorithm Working Group

based on a combination of existing channels from

GOES-East and GOES-West and simulation of new

channels through NWP and radiative transfer model

calculations (Greenwald et al. 2016). The purpose of the

proxy dataset was to facilitate development of new

products and techniques based on the ABI bands such

that they would be ready for testing and operational use

soon after GOES-R becomes operational. Technical

documentation and validation results for all theGOES-R

ABI cloud-derived products has been published online

by the GOES-R Program (http://www.goes-r.gov), but

brief descriptions of several products relevant to this

work will also be described here for convenience. The

products used for the training database were: cloud type,

cloud-top height (converted fromMSL to AGL), cloud-

top temperature, cloud-top optical depth, and cloud-top

effective radius.

Cloud-top phase and type are based on four IR bands

from ABI centered on 7.4, 8.5, 11, and 12mm, re-

spectively. Because no visible channels are included, the

cloud-top phase and type are available both day and

night. There are six primary cloud types: liquid water,

supercooled water, mixed phase, thick ice, thin ice, and

multilayered clouds. The cloud phase product has simi-

lar categories but collapses all ice-topped clouds to a

single ice class (i.e., liquid water, supercooled water,

mixed phase, and ice). The phase discrimination is based

on the work of Pavolonis (2010), who proposed the use

of effective absorption optical depth ratios between two

spectral channels, or b ratios, which were more closely

related to cloud microphysics and less sensitive to

background radiance contamination than traditional

techniques based on Tb or spectral Tb differences. An

additional advantage of classifying cloud composition in

b space is a clear separation between radiances pre-

dominantly originating from water or ice clouds and

those originating from other sources such as volcanic ash

and dust (Pavolonis 2010). A median filter is applied to

the b fields prior to classification of cloud types to mit-

igate speckles and noise. In the GOES-R proxy cloud

products evaluated in this study for the years 2011–12,

the ‘‘mixed phase’’ class was not yet available, while a

seventh class for ‘‘overshooting tops’’ was included. The

six categories included here are thus liquid water (i.e.,

warm rain), supercooled water, thick ice, cirrus (i.e., thin

ice), multilayered clouds, and overshooting tops.

Cloud-top height, temperature, and pressure are

based on three IR bands from ABI centered on 11, 12,

and 13.3mm, respectively. As with the cloud phase and

FIG. 1. ExampleMRMS RQI display for all CONUSWSR-88D radars and Canadian radars at

0000 UTC 28 Oct 2014.
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cloud type products, relying solely on IR channels allows

the cloud-top height and temperature to be available

day and night with no transitional discontinuities. The

11- and 12-mm bands are within spectral windows while

the 13.3-mm band experiences strong absorption by

carbon dioxide (CO2) in the atmosphere. The CO2 ab-

sorption is advantageous for monitoring the cloud-top

height, especially for optically thin cirrus, because both

the background surface and lower atmosphere are to-

tally obscured. The availability of all three of these

bands on ABI led to the development of a cloud-top

height algorithm by Heidinger et al. (2010) that com-

bined the relative strengths of two preexisting two-

channel techniques: split window and CO2 slicing.

Cloud-top temperature is computed first using the hy-

brid CO2/split-window method, and then the associated

height and pressure are derived by matching the cloud-

top temperature to analyzed temperature profiles from

an NWP model. Cloud-top temperature is the only

product that will be available at the native ABI resolu-

tion. Height and pressurewill be disseminatedwith 10-km

grid spacing for full disk and CONUS scans and will be

updated hourly.

Cloud optical depth and cloud-top particle size use a

combination of one visible channel (0.64mm, or the

‘‘red’’ band) and one near-IR channel (2.25mm). Be-

cause of the dependence on a visible channel, the

methodology described here is only applicable when

there is sufficient backscattered solar radiation (i.e.,

during daytime hours). While an IR-based nighttime

algorithm for optical depth and particle size has been

developed for the ABI, it was not made available for the

2011–12 cloud products proxy dataset; thus, the data-

base compiled for this study was limited to daytime

observations. Variations in cloud optical depth can be

almost entirely explained using information in the 0.64-mm

channel as input to a radiative transfer model if the

phase of the cloud particles is known (Walther et al.

2011). After a correction to account for scattering and

absorption by the atmosphere, the attenuation of solar

radiation can be shown to be proportional to the number

of scattering particles along the transmission path, which

determines the cloud’s optical thickness (Walther and

Heidinger 2012). Both optical depth and cloud-top

particle size can then be retrieved by using a combina-

tion of the visible channel and a near-IR channel.

3. Methodology

a. Overview of naïve Bayesian formulation

Naïve Bayesian classification is a simple but powerful

tool for generating probabilities of output classes if the

probability distributions of the predictors are known

and can be treated as statistically independent. The as-

sumption of statistical independence between the pre-

dictor variables is the defining characteristic that

distinguishes naïve Bayes classifiers from classic Bayes

classifiers. The classic Bayes theorem states that the

conditional probability of a particular outcome y given

the state vector x can be derived from

P(y j x)5P(y)P(x j y)
P(x)

, (1)

where P(y) is the prior probability regardless of x,

P(x j y) is the posterior probability or the ‘‘likelihood’’ of
the x observations when the outcome y is observed, and

P(x) is probability of occurrence for the particular set of

features contained in x.

Cast in the context of this study, the outcome y is a

particular precipitation type (stratiform, convective,

etc.), and the state vector x is a set of cloud-top obser-

vations at a pixel (cloud-top height, temperature, par-

ticle size, and optical depth). In classical Bayesian

classifiers, there is no assumption of independence

among the observations in x and the conditional joint

probabilities must be fully accounted for. For example,

for three cloud-top variables, the full expression of the

Bayes equation would be

P(y j x)5P(y)P(x
1
j y)P(x

2
j y, x

1
)P(x

3
j y, x

1
, x

2
)

P(x
1
)P(x

2
j x

1
)P(x

3
j x

1
, x

2
)

. (2)

While this problem may be somewhat tractable for three

predictors despite the additional computational over-

head, the solution space for the joint probabilities quickly

becomes prohibitive when additional predictors are

added because of the NN dimensionality. Adequately

capturing the conditional joint probabilities also requires

an ever-increasing amount of training data with higher

dimensions in order to fully populate the nonparametric

probability matrices.

In a naïve Bayes classifier, when the predictors in x are
assumed to be independent, the P(x j y) terms collapse

to a much more manageable form:

P(y j x)5P(y)P(x
1
j y)P(x

2
j y)P(x

3
jy)

P(x
1
)P(x

2
)P(x

3
)

, (3)

where each observation in x can be expressed as a sep-

arate probability distribution.

Before proceeding with the naïve Bayesian classifi-

cation, a quick analysis was conducted to determine the

intercorrelation of various cloud-derived products in the

GOES-R proxy dataset. Figure 2 shows the range of

daily estimates of correlation coefficient for the 2-yr
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database period. Unsurprisingly, cloud-top height,

temperature, and pressure are all highly correlated with

each other, along with the 11-mm cloud emissivity.

While emissivity was included in the proxy database and

can be a useful parameter for detection and monitoring

of convection (Cintineo et al. 2013), it was left out of the

final Bayesian classifier because it is not planned to be

released as part of the initial operational baseline of

products from GOES-R. Optical depth and particle size

(effective radius) show moderate correlation with other

variables and each other, but the correlation appears to

be highly variable from day to day with a broad range for

the middle 95% of data points. Based on this analysis,

we decided to limit our analysis to four cloud products:

cloud-top height, cloud-top temperature, cloud-top

particle size, and cloud optical depth.

While cloud-top height and temperature were strongly

correlated, both of themwere kept because both variables

tend to have limitationswhenused on their own.Although

cloud-top temperature would be available from GOES-R

at a higher spatiotemporal resolution, temperatures of

cloud tops have a seasonal and geographic dependence

that could impact the classification, particularly between

shallow convection and warm versus cool season strati-

form clouds. Including cloud height in the joint probability

helps to address the seasonal variation and can better

segregate stratiform and convective pixels, despite its de-

graded resolution. It may be necessary to resample the

10-km cloud-top height product to match the geospatial

parameters of the other products and recover some of the

subgrid variability lost from the aggregation to 10km.

All entries in the 2011 training database were first

segregated by cloud type such that each cloud type

would have its own set of cloud-top probability density

functions (PDFs) and precipitation type distribution,

and hence its own naïve Bayesian classifier. The rea-

soning for this first breakdown of the database was the

expectation that certain cloud types (e.g., overshooting

tops) would have vastly different cloud-top properties

and precipitation type frequencies than others (e.g.,

warm rain). This was indeed the case (Fig. 3), but an

unanticipated outcome of the cloud type segregation

was that all four MRMS precipitation types were still

represented for all cloud types, albeit in different pro-

portions. For example, 11% of the pixels matched to the

overshooting tops cloud type were deemed to be strati-

form according to the MRMS decision-tree logic.

Overshooting tops are more indicative of localized up-

drafts and are therefore expected to be convective pre-

cipitation types. It is possible that there were weak

updrafts that did not meet the MRMS convective cri-

teria but still resulted in overshooting tops. These types

of nuances in the classification schemes can result in

some of the algorithmic differences.

The prior probability of each precipitation type, P(y),

was computed to be its relative frequency among all four

MRMS precipitation types for rain (stratiform, convec-

tive, tropical, and hail) based on all database entries from

2011, conditioned on the cloud type. Once the 2011 da-

tabase was segregated by cloud types, discrete probability

distributions were constructed for cloud-top height (con-

verted fromMSL toAGL), cloud-top temperature, cloud-

top particle size, and optical depth, and these distributions

drive the values in the denominator of the naïve Bayesian
formula [i:e., P(xk)]. They were stored in text lookup ta-

bles for rapid retrieval. For the posterior probability

values P(xk, y), additional probability distributions were

stored in lookup tables for each of the four precipitation

FIG. 2. Distributions of daily correlation coefficient between various GOES-R proxy cloud

product pairs during the full 2011–12 database period.White lines in the box plots represent the

median value, and boxes represent the interquartile range (25th–75th quartiles). The upper and

lower whiskers represent the 95th and 5th percentiles, respectively.
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types conditional on the cloud type. In other words, 24

separate database queries were made for all entries

matching one of six cloud types and one of four pre-

cipitation types, and the results of those queries produced

the resulting cloud product PDFs. In the final classification

algorithm, when a pixel needs to be classified, it retrieves

specific lookup tables based on the pixel’s cloud type.

The grid spacing difference between the GOES-R

proxy data (approximately 4km) and the MRMS data

(0.018) was such that each GOES gridbox footprint

contained anywhere from 15 to 100 MRMS pixels,

depending on latitude. Because we were working with

discrete precipitation type classes rather than continu-

ous variables, a method had to be established for how to

determine the representative MRMS precipitation type

for the cluster of grid points matched to a single GOES

measurement of cloud-top properties. The nearest-

neighbor sample of MRMS pixels matched to the

GOES latitude and longitude were collapsed as follows:

1) If any MRMS pixel is classified as hail, the represen-

tative class is ‘‘hail.’’

2) If no hail pixels are found, the representative class is

‘‘convective’’ if any MRMS pixels are classified as

convective.

3) If no convective or hail pixels are found, the repre-

sentative class is ‘‘tropical’’ if any MRMS pixels are

classified tropical.

4) Finally, if the only precipitation type found is strat-

iform, the representative class is ‘‘stratiform.’’

b. Classification of snow

When constructing the training database, GOES-13

grid points that overlapped any MRMS points classified

as snow were excluded such that the Bayesian algorithm

only attempts to classify different types of rain. In the

final precipitation type classification algorithm, frozen

surface precipitation was diagnosed separately as a

function of the surface elevation and the height of the

MRMS brightband bottom product. The brightband

bottom product is an output of the automated brightband

identification algorithm developed by Zhang et al. (2008)

and represents the height of the bottom of the melting

layer within which brightband enhancement can occur. It

is derived by using an NWP analysis of freezing-level

height as the first background guess of the brightband top

and is adjusted based on the height of brightband signa-

tures observed by the national WSR-88D radar network.

The brightband bottom is defined at a height of no more

than 700mbelow the radar-detected brightband peak. By

using the bottom of the bright band rather than the top,

the ‘‘snow’’ class therefore includes mixed phase and

melting hydrometeors. This classification of snow regions

is anticipated to be a temporary approach until more

sophisticated winter surface precipitation type classifica-

tion methods are available (e.g., Elmore 2011; Schuur

et al. 2013; Elmore et al. 2014).

4. Results

a. Statistical verification

Satellite-based precipitation types were produced for

every database entry during the 2012 verification period

FIG. 3. Bias ratio for the satellite-based precipitation types in

2012 relative to the following MRMS precipitation type classifi-

cations: (a) stratiform, (b) convective, (c) tropical, and (d) hail.
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using cloud-top PDFs and MRMS precipitation type

distributions derived from the 2011 data. Binary con-

tingency tables were constructed for each of the four

primary rain precipitation types (stratiform, convective,

tropical, and hail), such that the MRMS type is treated

as the target class and any other is treated as a mis-

classification. From those contingency tables, standard

forecast verification metrics were computed: probability

of detection (POD), false alarm rate (FAR), hit rate

(HR), Heidke skill score (HSS), critical success index

(CSI), equitable threat score (ETS), and bias ratio

(BIAS) (Wilks 1995). For clarity, the bias ratio repre-

sents the ratio of the number of times a class is predicted

(e.g., the satellite algorithm) over the number of times

the class is observed (MRMS), so BIAS values greater

than one represent overprediction of a class. In addition

to computing these metrics as aggregate values for all

database events, the metrics were also computed for

each of the six precipitating cloud types from GOES-R:

warm rain, supercooled liquid, thick ice, cirrus, multi-

layer, and overshooting tops. A summary of all the

scores is provided in Table 1.

Based on HSS and ETS, the stratiform and tropical

types from satellites tended to most consistently match

the collapsed MRMS types. The convective class had

lower HSS and ETS but resulted in the highest CSI of

the four classes, which may be in part because of its

higher frequency of classification (Schaefer 1990). In

addition to being the most frequent precipitation type

classified, convective also had the highest POD along

with a relatively lower FAR. The POD and FAR for the

stratiform and tropical classes varied with the cloud

type. For example, the cloud types with the highest POD

in stratiform rain were supercooled water and cirrus,

TABLE 1. Contingency table verification scores for the naïve Bayesian precipitation type algorithm when compared against the four

MRMS precipitation types. Cloud types are defined as All5 all types, WR5 warm rain, SUP5 supercooled liquid water, TI5 thick ice,

CIR5 cirrus (i.e., thin ice), ML5multilayer, andO5 overshooting tops. The ‘‘count’’ column represents the number of entries available

for that category from the 2012 verification database.

Cloud type HSS POD FAR HR CSI ETS BIAS Count

All

All 0.21 0.41 0.59 0.70 0.26 0.12 1.00 14 157 577

Stratiform

All 0.24 0.42 0.61 0.74 0.25 0.14 1.08 2 999 813

WR 0.04 0.25 0.60 0.59 0.18 0.02 0.63 146 161

SUP 0.19 0.56 0.63 0.63 0.29 0.10 1.51 373 487

TI 0.25 0.43 0.61 0.75 0.26 0.14 1.13 1 307 050

CIR 0.26 0.52 0.55 0.69 0.32 0.15 1.17 636 288

ML 0.16 0.30 0.67 0.74 0.19 0.09 0.92 348 140

O 0.09 0.09 0.69 0.87 0.07 0.05 0.29 188 687

Convective

All 0.06 0.63 0.58 0.51 0.34 0.03 1.48 5 587 352

WR 0.01 0.78 0.62 0.44 0.34 0.01 2.08 148 945

SUP 0.07 0.63 0.54 0.52 0.36 0.03 1.37 604 337

TI 0.06 0.55 0.59 0.53 0.30 0.03 1.36 2 473 883

CIR 0.10 0.63 0.56 0.53 0.35 0.05 1.45 923 435

ML 0.04 0.67 0.53 0.51 0.38 0.02 1.42 810 476

O 0.03 0.82 0.60 0.45 0.36 0.01 2.06 626 276

Tropical

All 0.12 0.26 0.61 0.68 0.19 0.06 0.66 3 924 635

WR 0.00 0.00 0.76 0.89 0.00 0.00 0.00 43 706

SUP 0.01 0.02 0.73 0.82 0.02 0.01 0.06 246 406

TI 0.09 0.33 0.60 0.62 0.22 0.05 0.82 2 162 438

CIR 0.12 0.19 0.62 0.75 0.14 0.07 0.49 520 947

ML 0.09 0.24 0.71 0.72 0.15 0.05 0.80 374 024

O 0.10 0.22 0.52 0.64 0.18 0.05 0.47 577 144

Hail

All 0.01 0.00 0.67 0.88 0.00 0.00 0.01 1 645 777

WR 0.00 0.00 0.44 0.84 0.00 0.00 0.00 63 484

SUP 0.00 0.00 0.68 0.87 0.00 0.00 0.00 184 241

TI 0.01 0.01 0.64 0.90 0.00 0.00 0.01 671 295

CIR 0.00 0.00 0.78 0.89 0.00 0.00 0.02 256 384

ML 0.00 0.00 0.74 0.86 0.00 0.00 0.00 240 452

O 0.01 0.01 0.61 0.86 0.01 0.01 0.02 229 921
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while for the tropical rain the highest were thick ice and

multilayer clouds. As expected, the satellite-based clas-

sification algorithm struggled to ‘‘correctly’’ classify the

stratiformpixels where overshooting tops were identified,

whereas the POD for the convective class associated with

overshooting tops was 0.82. The combination of ex-

tremely low POD with high HR for the hail class is in-

dicative of both the underprediction of hail where it is

observed inMRMSand the presence of a large number of

‘‘correct null’’ events given that hail was the rarest class of

the four. Further analysis of the satellite algorithm’s

treatment of hail is provided later in this section.

In terms of relative bias in Table 1, broadly speaking,

the convective and stratiform classes tended to be used

more often in the satellite algorithm than they were

observed in MRMS at the expense of the tropical and

hail classes. The differences were a bit more nuanced

when the database was subdivided by cloud type. De-

spite overall having a slightly high bias for 2012, the bias

for the stratiform class was dominated by overprediction

in the three most common cloud types (thick ice, cirrus,

and supercooled water). The bias is less than one where

warm rain, multilayer clouds, and overshooting tops

were identified. The warm rain and overshooting tops

types were predominantly classified as convective.

While the tropical class was underpredicted overall, the

bias is highly variable by cloud type, with thick ice and

multilayer clouds showing the most consistency to

MRMS. By contrast, the warm rain and supercooled

water types were almost never classified as tropical,

which may be because of the shallow nature of these

cloud types and low reflectivity of the precipitation.

Also included in Table 1 is a breakdown of raw event

counts contained in each precipitation type and cloud

type. Events are defined as a single, instantaneous

GOES-R proxy grid point that is matched to the rele-

vant MRMS products and meets the selection criteria

defined in section 2. Of the approximately 14 million

database events from 2012, 39.5% were classified as

convective using the collapsed MRMS precipitation

type classification, 27.7% were tropical, 21.2% were

stratiform, and 11.6% were hail. A large majority of the

GOES-R proxy cloud types observed were classified as

thick ice (46.7%), followed distantly by cirrus (16.5%).

In the GOES-R ‘‘cloud phase’’ product, which is the

initial baseline operational cloud type that will be

available, the thick ice and cirrus types will be combined

as a single ‘‘ice’’ class, which will therefore comprise

over 60% of all cloud types.

b. Geographical analysis

Figure 3 illustrates how the bias ratio varies by region

over the CONUS for each of the four precipitation types

in 2012. The database events were binned into 1.08
latitude–longitude grid boxes over the MRMS domain.

Bias values greater (less) than one indicate that the

naïve Bayesian model produces more (less) of that

precipitation type than MRMS. Broadly speaking, the

gaps and variability characteristic of the western half of

the United States were a result of poor ground-radar

coverage and low sample sizes of ‘‘good quality’’ ob-

servations in MRMS, as defined by the RQI and mini-

mum rain-rate criteria for inclusion in the database.

Over the relatively well-sampled eastern half of the

CONUS, the satellite precipitation type tends to favor

stratiform and convective, with tropical and hail less

likely to be classified than they would be in MRMS.

The geographical distribution of the tropical pre-

cipitation type bias strongly correlated with the quality

and density of ground-radar coverage (Fig. 4), which is

an artifact of theMRMS product used in the comparison

rather than a reflection of any tendency in the satellite-

based algorithm. One of the criteria for tropical clas-

sification in MRMS is the detection of a ‘‘low-echo

centroid’’ feature in the vertical profile of reflectivity

(VPR) that is indicative of efficient warm rain processes

(Xu et al. 2008). Therefore, the MRMS tropical class is

critically dependent on the availability of sufficient ra-

dar measurements below the melting layer for a vertical

reflectivity gradient to be computed. If observations

below the melting layer were limited or unavailable, the

tropical class was not invoked. While the bias ratio dis-

tribution in Fig. 3 would imply that the naïve Bayesian

algorithm was underpredicting the tropical class relative

to MRMS in areas of good low-level radar coverage, the

MRMS SPT has a well-documented tendency to classify

rain as tropical too often, particularly in the warm sea-

son (Chen et al. 2013). It is possible that the cloud-top

properties associated with the MRMS tropical class

are not sufficiently different from the stratiform or

FIG. 4. Coverage of theWSR-88D radar network over the CONUS

at or below 3 km AGL (Maddox et al. 2002).
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convective cloud-top properties because many of the

tropical pixels are in fact misclassified in MRMS. Ad-

ditionally, the definition of the tropical precipitation

type in MRMS as being based on vertical reflectivity

structure near the ground suggests that correctly iden-

tifying it from cloud-top information alone would be

challenging.

To further investigate the cause of the significant

underprediction of the hail category by the satellite-

based algorithm, we evaluated the naïve Bayesian

probabilities of the three nonhail classes for locations

that were classified as hail by MRMS (Fig. 5). With

some possible exceptions over New England and the

U.S. West Coast, the dominant alternative classification

to hail was convective. In MRMS, the hail category is

defined as an extension to convective that is only in-

voked based on a minimum threshold of the radar-

derived maximum expected size of hail (MESH)

product in order to apply an upper limit on convective

rain rates where hail contamination is likely (Zhang

et al. 2016). Therefore, it is not surprising that from the

point of view of a spaceborne sensor, there was no

discernable difference between cloud tops classified as

convective and those classified as hail. The areas with

relatively higher likelihood of stratiform classification

tend to correspond with regions where hail and severe

hail were rare based on multiyear climatological as-

sessments (Cintineo et al. 2012), which could suggest

that vigorous deep convection is also relatively less

common. Furthermore, satellite-based rainfall estima-

tion does not have the same sensitivity to the presence

of hail as radar-based measurements, so the identifi-

cation of hail may not be as critical from a QPE accu-

racy perspective.

c. Case studies

To illustrate how the satellite-based precipitation

types compare to MRMS for individual rainfall events,

snapshots from three different cases and regions are

provided here. The first example at 2015 UTC 19 May

2011 shows two different events over the central United

States: a broad area of upslope-driven stratiform rain

and elevated convection over the northern plains and

isolated severe convection over western Oklahoma

(Fig. 6). Ground-radar coverage from the WSR-88D

network is severely limited over southeastern Montana

and easternWyoming (Fig. 6c), resulting in large gaps in

the MRMS products. The relatively low freezing-level

heights during this event resulted in large areas being

classified as being within or above the melting layer,

which was characterized in theMRMSSPT as the yellow

brightband class, which is used only in areas already

classified as stratiform precipitation to indicate that the

radar beam is sampling mixed phase or ice hydrome-

teors. Recognizing that bright band is an extension of

the stratiform class, there was good agreement between

the satellite-based precipitation types of stratiform

precipitation (Fig. 6b) withMRMS (Fig. 6a). The spatial

consistency with the satellite-based product highlights

the potential for filling in QPE gaps in the ground-radar

network.

Farther east in areas of the Dakotas and Oklahoma

that are well covered by radars, the primary difference

between MRMS and the naïve Bayesian classification

was the tendency for the satellite-based product to more

broadly apply the convective precipitation type. The

convective region in SouthDakota was associated with a

broad area that was classified as overshooting tops in the

cloud type product, which could be a misclassification of

the cloud type. Because the GOES-R overshooting tops

product was under development and is not slated to be

included in the baseline suite of operational products, its

performance will not be evaluated here. The convective

FIG. 5. Percent of events classified as (a) stratiform, (b) convective,

and (c) tropical where the MRMS precipitation type was classified

as hail.
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region in Oklahoma was associated with a line of dis-

crete supercells initiating along the dryline. While the

MRMS SPT only assigns convective and hail classes to

the strongest cores of the storms and applies stratiform

and brightband classes to the anvil regions, the satellite-

based product broadly classified the storm updrafts and

anvils both as convective. The naïve Bayesian algorithm

consistently classified convection in this manner for a

variety of storm modes, including mesoscale convective

systems.

To demonstrate the probabilistic nature of the

naïve Bayesian classification, Fig. 7 shows the indi-

vidual probabilities of each precipitation type for the

same event as in Fig. 6. While there were areas where

one of the precipitation type probabilities far ex-

ceeded those of the other types (e.g., stratiform in

central Wyoming), there were other regions where

two precipitation types had relatively high probabil-

ities (e.g., the isolated showers in the Four Corners

region). A weak local maximum in the hail probabil-

ities existed over southwestern Oklahoma (Fig. 7,

bottom right) that corresponded well to the area

where hail is classified by MRMS (Fig. 6a) despite the

overall low hail probabilities across the area. The final

classification in the precipitation type scheme is based

on the selection of the precipitation type with the

maximum probability at any given location (Fig. 6b),

but it may be possible to leverage the individual

probabilities in a more seamless fashion that is not

dependent on a deterministic classification for each

grid point.

The second example case is a synoptic-scale Pa-

cific frontal system over the northwestern CONUS at

2015 UTC 18 January 2012 with rain primarily ob-

served along theWest Coast and snow observed across

the mountainous areas (Fig. 8). Subjective evaluation

of the simple snow classification method employed for

the satellite product shows an effective delineation

of snow from rain with some subtle differences in

transitional zones. The naïve Bayesian classification

produced more convective and tropical areas than

were identified in MRMS. The naïve Bayesian

FIG. 6. Comparison of (a) MRMS precipitation type, (b) naïve Bayesian classification of precipitation type

from GOES-R proxy cloud properties, (c) MRMS RQI, and (d) GOES-R proxy cloud type valid at 2015 UTC

19 May 2011.
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classifications also showed greater coverage of pre-

cipitation over the region owing to the fact that

MRMS is limited by the sparse radar coverage. This

again highlights the benefit of satellite-based pre-

cipitation type estimates over these regions of poor

low-level sampling by ground radars.

The third case example presented was Hurricane

Sandy along the eastern coast of the United States

(Fig. 9). Hurricane Sandy was a category 1 hurricane

centered off the North Carolina coast at 1815 UTC

28 October 2012, where the eye structure is apparent in

the GOES-R proxy-based images (Figs. 9b,d). Aside

from a lack of ground-based observations over the

open ocean, the primary difference between MRMS

and the satellite-based algorithm was the use of the

tropical precipitation type. Although it has been noted

in previous studies (e.g., Chen et al. 2013) that the

tropical class is too often invoked in MRMS, for this

particular event that was not the case. One reason for

the nonuse of the tropical class in MRMS was that

much of the low-level reflectivity associated with

Sandy was below the 30-dBZ minimum threshold

required for MRMS to use the tropical R(Z) relation-

ship for rain rates; thus, the classification of stratiform

was used by default. It is also possible that the VPR

low-echo centroid criterion was not met for the coastal

radars to be classified as tropical, particularly asHurricane

Sandy developed extratropical characteristics as it

approached land. Instances such as this case highlight

the discrepancies between MRMS and the satellite-

based algorithm that may not be deemed as either

correct or incorrect. Despite having a more direct

measurement using active remote sensing, the MRMS

algorithms rely on decision-tree logic that is sensitive

to specific thresholds whereas the satellite-based al-

gorithm uses the full PDF.

d. Impact of rain-rate thresholds

As noted in section 2, one of the criteria for inclusion

of an observation in the training database was that the

maximum MRMS rain rate within a GOES-R gridpoint

area must exceed 10mmh21. If the maximum rain-rate

criteria are met, then all other MRMS grid points within

that GOES-R footprint are also included in the

FIG. 7. Individual precipitation type probabilities valid at 2015 UTC 19 May 2011.
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database. To assess the impact of that threshold on the

resulting precipitation type classification, a second ver-

sion of the database was constructed using a maximum

MRMS rain rate of at least 2.54mmh21 (0.10 in. h21).

Table 2 contains a similar summary of verification

statistics to Table 1 for the lower rain-rate-derived

database.

Applying a lower threshold increased the size of the

database from 14 million to over 42 million entries. In

other words, the GOES-R grid points with higher

maximum surface rain rates would only comprise one-

third of the samples such that the probability distri-

butions are dominated by observations with lighter

precipitation. As a result, the convection-dominant

character of the previous model is replaced by a

dominance of stratiform precipitation, which is more

consistent with the relative frequencies observed in

MRMS. The higher likelihood of stratiform classifica-

tion appears to improve several of the verification

metrics over the previous database for stratiform rain

in particular, but it seems to have adverse effects on

other classes, especially the tropical class.

The tropical classification is not invoked in MRMS

unless the lowest elevation reflectivity exceeds 30 dBZ,

which is equivalent to a minimum rain rate of at least

3.2mmh21. By default, areas with lower reflectivity

and a positive tropical identification are classified as

stratiform instead. Because the new database is so

heavily dominated by lighter precipitation, we feel that

this is the reason that the tropical class is far less fre-

quently used. Thus, while the use of a lower rain-rate

threshold may more closely represent probability dis-

tributions of rainfall observed in nature, it has some

deleterious impacts on the classification of precipitation

type because of the way the training classes are derived.

An intermediate threshold between 2.54 and 10mmh21

may represent an optimum level such that the stratiform

and convective classes are unbiased and the tropical

classifications are still represented.

5. Summary and conclusions

A technique for classifying precipitation type from

GOES-R cloud-derived products was proposed and

FIG. 8. As in Fig. 6, but for results at 2015 UTC 18 Jan 2012.
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evaluated here for the purposes of developing a

precipitation-type-driven quantitative precipitation

estimate in data-sparse regions of the United States.

The precipitation type classification is based on the

assumption that stratiform and convective echoes have

statistically distinct cloud-top characteristics that can

be segregated and classified using a data-driven prob-

abilistic model. PDFs of cloud-top height, temperature,

particle size, and optical depth were constructed for

different categories of cloud type and MRMS surface

precipitation type using a 2-yr database of GOES-R

proxy cloud-top products matched to MRMS ground-

radar-derived products, and the relative frequency of

occurrence of each MRMS precipitation type was also

computed. Snow areas were classified using MRMS

products that identify the height and depth of the

melting layer across the CONUS.

Although the precipitation types produced from the

naïve Bayesian model were trained using the MRMS

precipitation types as ‘‘truth,’’ the resulting classifi-

cations showed some differences. Because the tropical

and hail classes from MRMS are derived solely from

radar-observed criteria, the naïve Bayesian model

could not effectively distinguish the cloud-top char-

acteristics of those classes from other areas classified

as stratiform or convective. The different behavior of

the cloud-top-based classification appeared to make

sense physically, however, when evaluating more

closely how the precipitation types are applied. Even if

the satellite-based algorithm cannot separate hail

from convective, it still correctly identified the hail

cores as convective as opposed to stratiform or tropi-

cal. It also appeared to correctly identify the tropical

class in coastal maritime systems even when MRMS

does not.

The naïve Bayesian classification generally tends to

be biased toward the convective precipitation type,

which appears to be associated with the rain-rate

threshold chosen for the initial database. A second

database constructed using a lower rain-rate thresh-

old (2.54 instead of 10mmh21) showed a dominance

of stratiform classification instead of convective. Be-

cause the precipitation classification methodology in

MRMS uses stratiform as the default class where

FIG. 9. As in Fig. 6, but for results at 1815 UTC 28 Oct 2012.
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reflectivity thresholds are not met for the other three

classes, selection of a very low rain-rate threshold

may place too much weight on stratiform at the ex-

pense of the other classes, which was evident in Table

2. For the final version of the algorithm used for

QPE, an intermediate threshold between 2.54 and

10mmh21 should be chosen that achieves unbiased

stratiform and convective classification frequency

while still allowing for tropical classification. Future

work will focus on identifying the appropriate

threshold value, which will be need to be completed

prior to operational implementation of this algo-

rithm. We will also test alternate methods of defin-

ing the MRMS classification to see if requiring

more areal coverage of the convective class within

the GOES-R grid box reduces the convective

overclassification.

A natural next step to this study will be the in-

tegration of total lightning observations for a more

definitive identification of convection using products

that will be readily available from the GLM aboard

GOES-R. Because the Cloud Type product from

GOES-R is slated as a ‘‘future’’ capability and will not

be part of the initial baseline, this same technique will

be used to derive a precipitation type algorithm that

uses the Cloud Phase product, which is similar to Cloud

Type but with the ice phase types collapsed into a single

ice class. The naïve Bayesian precipitation type model

produced from the Cloud Phase classes will be the

initial version used in real-time for satellite-derived

MRMS QPE products until the Cloud Type product is

disseminated from GOES-R operationally. The pre-

cipitation type product based on the technique de-

scribed in this paper, with some future adjustments, will

serve as guidance for a precipitation-type-dependent

rain-rate algorithm derived from GOES-R. The

satellite-based rain rates can potentially serve as a

compliment to the MRMS ground-based radar QPE

in a gap-filling capacity where radar coverage is either

poor or nonexistent.

TABLE 2. As in Table 1, but for contingency table statistics for a training database derived using a max MRMS rain rate of 2.54mmh21.

Cloud type HSS POD FAR HR CSI ETS BIAS Count

All

All 0.40 0.55 0.45 0.77 0.38 0.25 1.00 42 329 665

Stratiform

All 0.17 0.89 0.40 0.61 0.56 0.09 1.50 23 161 621

WR 0.04 0.96 0.37 0.63 0.62 0.02 1.52 808 246

SUP 0.12 0.95 0.34 0.66 0.64 0.07 1.44 3 534 668

TI 0.15 0.89 0.44 0.58 0.53 0.08 1.59 9 460 596

CIR 0.17 0.91 0.33 0.66 0.63 0.09 1.36 5 531 065

ML 0.13 0.86 0.43 0.58 0.52 0.07 1.51 2 813 581

O 0.15 0.63 0.60 0.57 0.32 0.08 1.57 1 013 465

Convective

All 0.10 0.25 0.67 0.71 0.16 0.05 0.74 9 980 404

WR 0.03 0.06 0.66 0.74 0.06 0.02 0.19 314 776

SUP 0.09 0.14 0.61 0.75 0.11 0.05 0.35 1 284 313

TI 0.09 0.23 0.69 0.71 0.15 0.05 0.76 2 473 883

CIR 0.15 0.25 0.64 0.75 0.17 0.08 0.68 1 820 228

ML 0.10 0.27 0.63 0.67 0.19 0.05 0.72 1 483 221

O 0.00 0.47 0.69 0.51 0.23 0.00 1.53 955 879

Tropical

All 0.00 0.00 0.57 0.82 0.00 0.00 0.01 7 517 414

WR 0.00 0.00 — 0.92 0.00 0.00 0.00 102 909

SUP 0.00 0.00 — 0.90 0.00 0.00 0.00 567 984

TI 0.01 0.01 0.59 0.78 0.01 0.00 0.01 4 007 597

CIR 0.00 0.00 0.63 0.87 0.00 0.00 0.00 1 151 921

ML 0.00 0.00 — 0.85 0.00 0.00 0.00 793 652

O 0.01 0.01 0.53 0.71 0.01 0.00 0.02 893 351

Hail

All 0.02 0.01 0.77 0.96 0.01 0.01 0.04 1 670 226

WR 0.00 0.00 0.93 0.95 0.00 0.00 0.00 65 702

SUP 0.02 0.02 0.83 0.96 0.02 0.01 0.10 187 748

TI 0.02 0.01 0.77 0.96 0.01 0.01 0.05 679 544

CIR 0.00 0.00 0.92 0.97 0.00 0.00 0.00 260 692

ML 0.00 0.00 0.83 0.95 0.00 0.00 0.00 244 283

O 0.03 0.02 0.73 0.92 0.02 0.02 0.09 232 257
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